Rapid and selective binding to the synaptic SNARE complex suggests a modulatory role of complexins in neuroexocytosis.

نویسندگان

  • Stefan Pabst
  • Martin Margittai
  • Darius Vainius
  • Ralf Langen
  • Reinhard Jahn
  • Dirk Fasshauer
چکیده

The Ca(2+)-triggered release of neurotransmitters is mediated by fusion of synaptic vesicles with the plasma membrane. The molecular machinery that translates the Ca(2+) signal into exocytosis is only beginning to emerge. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin, SNAP-25, and synaptobrevin are central components of the fusion apparatus. Assembly of a membrane-bridging ternary SNARE complex is thought to initiate membrane merger, but the roles of other factors are less understood. Complexins are two highly conserved proteins that modulate the Ca(2+) responsiveness of neurotransmitter release. In vitro, they bind in a 1:1 stoichiometry to the assembled synaptic SNARE complex, making complexins attractive candidates for controlling the exocytotic fusion apparatus. We have now performed a detailed structural, kinetic, and thermodynamic analysis of complexin binding to the SNARE complex. We found that no major conformational changes occur upon binding and that the complexin helix is aligned antiparallel to the four-helix bundle of the SNARE complex. Complexins bound rapidly (approximately 5 x 10(7) m(-1) s(-1)) and with high affinity (approximately 10 nm), making it one of the fastest protein-protein interactions characterized so far in membrane trafficking. Interestingly, neither affinity nor binding kinetics was substantially altered by Ca(2+) ions. No interaction of complexins was detectable either with individual SNARE proteins or with the binary syntaxin x SNAP-25 complex. Furthermore, complexin did not promote the formation of SNARE complex oligomers. Together, our data suggest that complexins modulate neuroexocytosis after assembly of membrane-bridging SNARE complexes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Complexin/Synaptotagmin 1 Switch Controls Fast Synaptic Vesicle Exocytosis

Ca(2+) binding to synaptotagmin 1 triggers fast exocytosis of synaptic vesicles that have been primed for release by SNARE-complex assembly. Besides synaptotagmin 1, fast Ca(2+)-triggered exocytosis requires complexins. Synaptotagmin 1 and complexins both bind to assembled SNARE complexes, but it is unclear how their functions are coupled. Here we propose that complexin binding activates SNARE ...

متن کامل

Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions.

Complexins are evolutionarily conserved proteins that specifically bind to soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes and thus may regulate SNARE function. Using purified proteins, we have performed a detailed analysis of the structure of complexin and of its interaction with SNARE proteins. NMR spectroscopy revealed that isolated complexins have no ...

متن کامل

Tilting the Balance between Facilitatory and Inhibitory Functions of Mammalian and Drosophila Complexins Orchestrates Synaptic Vesicle Exocytosis

SNARE-mediated synaptic exocytosis is orchestrated by facilitatory and inhibitory mechanisms. Genetic ablations of Complexins, a family of SNARE-complex-binding proteins, in mice and Drosophila cause apparently opposite effects on neurotransmitter release, leading to contradictory hypotheses of Complexin function. Reconstitution experiments with different fusion assays and Complexins also yield...

متن کامل

Complexins Living Up to Their Name— New Light on Their Role in Exocytosis

Ca(2+)-dependent exocytosis of synaptic vesicles is mediated by the SNARE proteins synaptobrevin/VAMP, SNAP-25, and syntaxin. SNARE function is controlled by conserved regulatory proteins, including the complexins. In a study by Xue et al. in this issue of Neuron, contradictory data from Drosophila and mouse complexin mutants have been resolved, revealing a complex pattern of facilitatory and i...

متن کامل

Arg206 of SNAP-25 is essential for neuroexocytosis at the Drosophila melanogaster neuromuscular junction.

An analysis of SNAP-25 isoform sequences indicates that there is a highly conserved arginine residue (198 in vertebrates, 206 in the genus Drosophila) within the C-terminal region, which is cleaved by botulinum neurotoxin A, with consequent blockade of neuroexocytosis. The possibility that it may play an important role in the function of the neuroexocytosis machinery was tested at neuromuscular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 10  شماره 

صفحات  -

تاریخ انتشار 2002